A Linear Multigrid Preconditioner for the solution of the Navier-Stokes Equations using a Discontinuous Galerkin Discretization
نویسندگان
چکیده
A Newton-Krylov method is developed for the solution of the steady compressible NavierStokes equations using a Discontinuous Galerkin (DG) discretization on unstructured meshes. An element Line-Jacobi preconditioner is presented which solves a block tridiagonal system along lines of maximum coupling in the flow. An incomplete block-LU factorization (BlockILU(0)) is also presented as a preconditioner, where the factorization is performed using a reordering of elements based upon the lines of maximum coupling used for the element Line-Jacobi preconditioner. This reordering is shown to be far superior to standard reordering techniques (Nested Dissection, One-way Dissection, Quotient Minimum Degree, Reverse Cuthill-Mckee) especially for viscous test cases. The Block-ILU(0) factorization is performed in-place and a novel algorithm is presented for the application of the linearization which reduces both the memory and CPU time over the traditional dual matrix storage format. A linear p-multigrid algorithm using element Line-Jacobi, and Block-ILU(0) smoothing is presented as a preconditioner to GMRES. The coarse level Jacobians are obtained using a simple Galerkin projection which is shown to closely approximate the linearization of the restricted problem except for perturbations due to artificial dissipation terms introduced for shock capturing. The linear multigrid preconditioner is shown to significantly improve convergence in terms of the number of linear iterations as well as to reduce the total CPU time required to obtain a converged solution. A parallel implementation of the linear multigrid preconditioner is presented and a grid repartitioning strategy is developed to ensure scalable parallel performance. Thesis Supervisor: David Darmofal Title: Associate Professor of Aeronautics and Astronautics
منابع مشابه
Discontinuous Galerkin solutions of the Navier-Stokes Equations using Linear Multigrid Preconditioning
A Newton-Krylov method is developed for the solution of the steady compressible Navier-Stokes equations using a Discontinuous Galerkin (DG) discretization on unstructured meshes. An element Line-Jacobi preconditioner is presented which solves a block tridiagonal system along lines of maximum coupling in the flow. An incomplete block-LU factorization (Block-ILU(0)) is also presented as a precond...
متن کاملPreconditioning methods for discontinuous Galerkin solutions of the Navier-Stokes equations
A Newton–Krylov method is developed for the solution of the steady compressible Navier– Stokes equations using a discontinuous Galerkin (DG) discretization on unstructured meshes. Steady-state solutions are obtained using a Newton–Krylov approach where the linear system at each iteration is solved using a restarted GMRES algorithm. Several different preconditioners are examined to achieve fast ...
متن کاملPreconditioning a mass-conserving discontinuous Galerkin discretization of the Stokes equations
The incompressible Stokes equations are a widely-used model of viscous or tightly confined flow in which convection effects are negligible. In order to strongly enforce the conservation of mass at the element scale, special discretization techniques must be employed. In this paper, we consider a discontinuous Galerkin (DG) approximation in which the velocity field is H(div,Ω)-conforming and div...
متن کاملp-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier–Stokes equations
We present a p-multigrid solution algorithm for a high-order discontinuous Galerkin finite element discretization of the compressible Navier–Stokes equations. The algorithm employs an element line Jacobi smoother in which lines of elements are formed using coupling based on a p = 0 discretization of the scalar convection–diffusion equation. Fourier analysis of the two-level p-multigrid algorith...
متن کاملEfficient Solution Techniques for Discontinuous Galerkin Discretizations of the Navier-Stokes Equations on Hybrid Anisotropic Meshes
The goal of this paper is to investigate and develop fast and robust solution techniques for high-order accurate Discontinuous Galerkin discretizations of non-linear systems of conservation laws on unstructured meshes. Previous work was focused on the development of hp-multigrid techniques for inviscid flows and the current work concentrates on the extension of these solvers to steady-state vis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007